Jun. 08, 2010
NewsScientific News

Biofuel from Cellulosic Plant Material

New Yeast Can Ferment More Sugar, Make More Cellulosic Ethanol

Purdue University scientists have improved a strain of yeast that can produce more biofuel from cellulosic plant material by fermenting all five types of the plant's sugars. Nathan Mosier, an associate professor of agricultural and biological engineering; Miroslav Sedlak, a research assistant professor of agricultural and biological engineering; and Nancy Ho, a research professor of chemical engineering, used genes from a fungus to re-engineer a yeast strain Ho developed at Purdue. The new yeast can ferment the sugar arabinose in addition to the other sugars found in plant material such as corn stalks, straw, switchgrass and other crop residues. The addition of new genes to the Ho yeast strain should increase the amount of ethanol that can be produced from cellulosic material. Arabinose makes up about 10 percent of the sugars contained in those plants.
In addition to creating this new arabinose-fermenting yeast, Mosier, Sedlak and Ho also were able to develop strains that are more resistant to acetic acid. Acetic acid, the main ingredient in vinegar, is natural to plants and released with sugars before the fermentation process during ethanol production. Acetic acid gets into yeast cells and slows the fermentation process, adding to the cost of ethanol production. "It inhibits the microorganism. It doesn't produce as much biofuel, and it produces it more slowly," Mosier said. "If it slows down too much, it's not a good industrial process." Mosier, Sedlak and Ho compared the genes in the more resistant strains to others to determine which genes made the yeast more resistant to acetic acid. By improving the expression of those genes, they increased the yeast's resistance. Mosier said arabinose is broken down in the same way as the other four sugars except for the first two steps. Adding the fungus genes allowed the yeast to create necessary enzymes to get through those steps.

Original publications:
Casey E., et al.: Effect of Acetic Acid and pH on the Cofermentation of Glucose and Xylose to Ethanol by a Genetically Engineered Strain of Saccharomyces Cerevisiae. FEMS Yeast Res. 2010 Mar 10. [Epub ahead of print]

Kumar A., et al.: Establishment of L-Arabinose Fermentation in Glucose/Xylose Co-fermenting Recombinant Saccharomyces Cerevisiae 424A(LNH-ST) by Genetic Engineering.

Appl Microbiol Biotechnol. 2010 May 7. [Epub ahead of print]

http://www.purdue.edu

Authors

Register now!

The latest information directly via newsletter.

To prevent automated spam submissions leave this field empty.