Jun. 24, 2014
NewsScientific News

Dynamic Spectroscopy Duo

2D electronic-vibrational spectroscopy technique provides unprecedented look into photochemical reactions: From allowing our eyes to see, to enabling green plants to harvest energy from the sun, photochemical reactions - reactions triggered by light - are both ubiquitous and critical to nature. Photochemical reactions also play essential roles in high technology, from the creation of new nanomaterials to the development of more efficient solar energy systems. Using photochemical reactions to our best advantage requires a deep understanding of the interplay between the electrons and atomic nuclei within a molecular system after that system has been excited by light. A major advance towards acquiring this knowledge has been reported by a team of researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley.

Graham Fleming, UC Berkeley's Vice Chancellor for Research, a faculty senior scientist with Berkeley Lab's Physical Biosciences Division, and member of the Kavli Energy NanoSciences Institute at Berkeley, led the development of a new experimental technique called two-dimensional electronic-vibrational spectroscopy (2D-EV). By combining the advantages of two well-established spectroscopy technologies - 2D-electronic and 2D-infrared - this technique is the first that can be used to simultaneously monitor electronic and molecular dynamics on a femtosecond (millionth of a billionth of a second) time-scale. The results show how the coupling of electronic states and nuclear vibrations affect the outcome of photochemical reactions.

"We think that 2D-EV, by providing unprecedented details about photochemical reaction dynamics, has the potential to answer many currently inaccessible questions about photochemical and photobiological systems," says Fleming, a physical chemist and internationally acclaimed leader in spectroscopic studies of events that take place on the femtosecond time-scale. "We anticipate its adoption by leading laboratories across the globe," Fleming is the corresponding author of a paper in the Proceedings of the National Academy of Sciences (PNAS) titled "Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy." Co-authors are Thomas Oliver and Nicholas Lewis, both members of Fleming's research group.

Read more within the original publication:
Oliver, T.A.A.

et al.: Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy. PNAS, published online before print on June 9, 2014. doi: 10.1073/pnas.1409207111

or at
http://newscenter.lbl.gov/

 

Register now!

The latest information directly via newsletter.

To prevent automated spam submissions leave this field empty.